Influence of asymmetric tip loss on the dynamics of V-tail aircraft

FYP Presentation
Simran Singh Panesar (B516302)

What is the relevance?
What research exists in the field?
How was the study approached?
Key Findings
Conclusions and further work

Purpose

- Aircraft survivability
 - Military and civilian
 - Loss is costly
- Loss of Control (LOC)
 - Leading cause of crashes
 - One every four days (FAA)
- V-Tail
 - Popular alternative to conventional
 - Prone to break ups in the past
- Autonomy and pilot awareness
 - Remotely Piloted Air Systems (RPAS)
 - Fault Tolerant Control (FTC)

Global Hawk RQ-4

Beechcraft Bonanza

^[1] https://foxtrotalpha.jalopnik.com/why-the-usafs-massive-10-billion-global-hawk-uav-was-w-1629932000

^[2] https://www.ainonline.com/sites/default/files/styles/ain30 fullwidth large 2x/public/uploads/2019/01/zunum aero aircraft family wm.jpg?itok=Br0TPef5×tamp=1546529481

Why V-tail?

Cirrus SF50

Salto Libelle

F117 Nighthawk

Zunum Aero Family

- $\begin{tabular}{ll} $\underline{$https://www.aopa.org/-/media/images/aopa-main/news-and-media/publications/pilot-magazine/2018/1801/1801p_bf_budgetbuy/1801p_bf_budgetbuy_16x9.jpg \\ \end{tabular} \begin{tabular}{ll} $\underline{$https://www.aopa.org/-/media/images/aopa-main/news-and-media/publications/pilot-magazine/2018/1801/1801p_bf_budgetbuy/1801p_bf_budgetbuy_16x9.jpg \\ \end{tabular} \end{tabular} \begin{tabular}{ll} $\underline{$https://www.aopa.org/-/media/images/aopa-main/news-and-media/publications/pilot-magazine/2018/1801/1801p_bf_budgetbuy/1801p_bf_budgetbuy_16x9.jpg \\ \end{tabular} \begin{tabular}{ll} $\underline{$https://www.aopa.org/-/media/images/aopa-main/news-and-media/publications/pilot-magazine/2018/1801/1801p_bf_budgetbuy_1801p_bf_budgetbuy_16x9.jpg \\ \end{tabular} \begin{tabular}{ll} $\underline{$https://www.aopa.org/-/media/images/aopa-main/news-and-media/publications/pilot-magazine/2018/1801p_bf_budgetbuy_1801p_bf_budgetbuy_16x9.jpg \\ \end{tabular} \begin{tabular}{ll} $\underline{$https://www.aopa.org/-/media/images/aopa-main/news-and-media/publications/pilot-magazine/2018/1801p_bf_budgetbuy_16x9.jpg \\ \end{tabular} \begin{tabular}{ll} $\underline{$https://www.aopa.org/-/media/images/aopa-main/news-and-media/publications/pilot-magazine/2018/1801p_bf_budgetbuy_16x9.jpg \\ \end{tabular} \begin{tabular}{ll} $\underline{$https://www.aopa.org/-/media/images/aopa-main/news-and-media/publications/pilot-magazine/2018/1801p_bf_bd_bday.jpg \\ \end{tabular} \begin{tabular}{ll} $\underline{$https://www.aopa.org/-/media/images/aopa-main/news-and-media/publications/pilot-magazine/2018/1801p_bf_bd_bday.jpg \\ \end{tabular} \begin{tabular}{ll} $\underline{$https://www.aopa.org/-/media/images/aopa-main/news-and-media/publications/pilot-magazine/2018/1801p_bd_bday.jpg \\ \end{tabular} \begin{tabular}{ll} $\underline{$https://www.aopa.org/-/media/images/aopa-main/news-and-media/publications/pilot-magazine/2018/1801p_bd_bday.jpg \\ \end{tabular} \begin{tabular}{ll} $\underline{$https://www.aopa.org/-/media/images/aopa-main/news-and-media/pilot-magazine/2018/1801p_bday.jpg \\ \end{tabular} \begin{tabular}{ll} $\underline{$https:$
- [2] https://cdn2.img.sputniknews.com/images/102617/90/1026179048.jpg
 [3] https://cdn11.bigcommerce.com/s-afq6npz/images/stencil/500x659/products/1710/3310/vtail_5__04068.1391333647.jpg?c=2
- [4] https://uncrate.com/p/2014/12/cirrus-vision-sf50.jpg

Previous Research

Betzina & Brown – Panel damage on an A-4B

Irwin/Pickhaver & Render - Hole damage

Shah - Asymmetric tip loss to NASA GTM

Musa and Mansor - Tail dihedral and sideslip

- [1] M.D. Betzina, D.H. Brown, Aerodynamic Characteristics Of An A-4B Aircraft With Simulated And Actual Gunfire Damage To One Wing, 1976.
- [2] P.M. Render, T.W. Pickhaver, The Influence of Hole Orientation on the Aerodynamics of Battle Damaged Wings, 2012.
- [3] G.H. Shah, M.A. Hill, Flight Dynamics Modeling and Simulation of a Damaged Transport Aircraft, (2012).
 [4] Musa et al., Effect of Tail Dihedral Angle on Lateral Directional Stability due to Sideslip Angles, 53rd AIAA Aerosp. Sci. Meet. (2015).

Methodology

- New empennage
 - Model needed to support V-tail configuration
 - 20, 55, 65 and 80 degrees dihedral
- New wing sections
 - NACA 0012 profile
 - 25% tip loss increments up to 75% loss
- Implementation of servos for step input
 - Arduino controlled servos
 - Yaw trimming
- Wind tunnel testing
 - SPPO analysis at each dihedral angle and loss case
 - Locked in roll

FEM analysis for stress concentrations

New modular empennage

Final setup

Key Findings – Undamaged Cases

- Longitudinal stability is directly related to the effective horizontal aspect ratio
 - Supported by Zhang and Yu [2]
 - Lower dihedral angles are more responsive
 - Higher dihedral angles are sluggish, but more maneuverable
- 80 degrees achieved level 3 undamaged
 - Any loss would push 65 to level 3
 - 65° defined as upper limit for dihedral

^[1] M. V Cook, Flight Dynamics Principles: A Linear Systems Approach to Aircraft Stability and Control, Elsevier Science, 2012.

^[2] G.Q. Zhang, S.C.M. Yu, A. Chien, Y. Xu, Investigation of the Tail Dihedral Effects on the Aerodynamic Characteristics for the Low Speed Aircraft, Adv. Mech. Eng. 5 (2013)

Key Findings – Undamaged Cases

- 38 degrees of dihedral is found as an optimum configuration
 - "Optimum angle between 20 and 45", Zhang & Yu, 2013
- If dihedral angle is too high, aircraft is overly sensitive in yaw
 - 80 degrees reacted strongly to small disturbances
 - Supported by Musa and Mansor

Key Findings – Tip Loss Cases

- 20 degrees dihedral
 - Time to half amplitude more than doubled with 75% loss
 - Level 3 qualities achieved with 75% loss
- 65 degrees dihedral
 - Sluggish in response
 - Reduced to level 3 with 50% loss but never divergent

Key Findings – Tip Loss Cases

- Ruddervator effectiveness is maintained at higher dihedral angles
 - 20 degrees was most resilient up to 50% loss
 - 80 degrees showed the smallest overall reduction from undamaged (48.8%)
- Unstable characteristic observed
 - All 50% loss cases showed a tendency to counter-pitch when damping
 - Of most interest due to coupling

Key Findings – Unstable 50% Characteristic

- All 50% loss cases showed a tendency to counter-pitch
- Affected ability to calculate damping ratios
- Coupling was correlated to a change in yaw rate

Key Findings – Unstable 50% Characteristic

Consequences

- PIO induced
- Roll increment would increase pilot workload
- Prone to tailspin

Potential Explanations

- Though roll was locked, the aircraft rocked
- Fuselage sidewash and wing downwash interaction (Musa & Mansor / Zhang and Yu)
- Asymmetric mass loss, therefore COG shifts laterally
- 50% span location is high pressure (Moradi et al.)

Conclusions

 Dihedral angles between 38 and 65 degrees provide a more maneuverable aircraft even with loss

- Nose always pitches up and yaws towards the damaged side
- No cases were divergent
- 50% unstable characteristic needs to investigated further as occurs at all angles

Further Work

- Repeat the experiment to ensure characteristic is aircraft agnostic
- Perform tests with roll unlocked
- Perform CFD or flow visualisation to understand vortex interaction
- Develop FTC system

Thank You